Viral Hepatitis Highlights from EASL and DDW 2016

Jennifer C. Price, MD, PhD
Assistant Professor of Medicine
University of California, San Francisco
NCSCG Post-DDW Symposium
June 11, 2016

Viral Hepatitis Highlights

HCV Cohort Studies

Resistance, Relapse, and Retreatment

Next Generation Antivirals

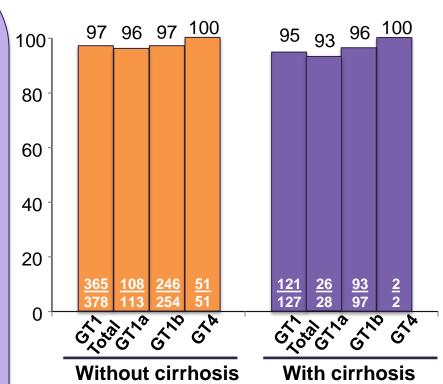
What is the REAL WORLD effectiveness of current DAA regimens?

Background:

- Clinical trials show ≥95%
 SVR12 across many patient groups with all-oral DAAs
- IFN-based HCV therapy SVRs more modest in real world than clinical trials

Aim:

To evaluate safety and effectiveness of all-oral DAAs in routine clinical practice


Methods:

- Real-world cohorts
 - German Hepatitis C-Registry¹
- Trio Network (US)²
- Choice of treatment, f/u testing at physician's discretion

What is the REAL WORLD effectiveness of current DAA regimens?

German Hepatitis C Registry:

- GT1 or 4 pts, 254 sites
 - Ombitasvir/paritapervir/ritonavir +/dasabuvir, +/- RBV
- Baseline characteristics
 - -95% Caucasian
 - -88% GT1
 - -22% Cirrhotic (7% decompensated)
 - -59% Tx experienced (12% prior PI)
- Label recommended regimen
 - -76-89% of GT1 patients
 - -92-94% of GT4 patients

- SAE in 2.1% (21/1017), more frequent w/RBV
- Total bilirubin ≥Grade 2 was rare in pts without cirrhosis (6-7% in pts with cirrhosis)
- ALT or AST elevations were infrequent

What is the REAL WORLD effectiveness of current DAA regimens?

Factors associated with all-oral DAA failure:

- German Hepatitis C Registry¹: 99% SVR12 among those treated within guidelines vs 92% not treated within guidelines
- Trio Network²: cirrhosis, platelets <100k/mL, male sex, non-African American, treatment outside FDA guidelines

	LDV/SOF +/- RBV	SMV + SOF +/- RBV	OPr(D) +/- RBV	Total
Outside FDA label	87% (204/235)	80% (16/20)	60% (9/15)	85% (229/270)
Inside FDA label	95% (2347/2461)	83% (25/30)	88% (49/56)	95% (2421/2547)
Total	95% (2551/2696)	82% (41/50)	82% (58/71)	94% (2650/2817)

Clinical Implications:

- Excellent SVR rates are achieved within routine practice
- Consult and adhere to clinical treatment guidelines

What is the impact of HIV on the effectiveness of current DAAs?

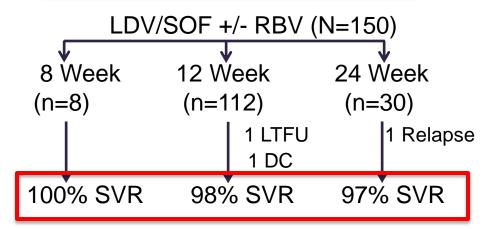
Background:

- High SVR rates among HIV/HCV-coinfected pts with all-oral DAAs in clinical trials
- Most HIV+ pts do not meet trial inclusion criteria¹

Aim:

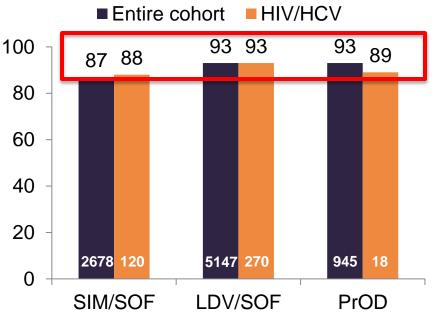
To compare DAA effectiveness among pts with and without HIV infection in routine clinical practice

Methods:


- Real-world cohorts
- TRIO Network (US)²
- VA Database(US)3
- HEPAVIR-DAA & GEHEP-MONO (Spain)⁴
- Choice of regimen, f/u testing at physician's discretion

¹Saeed et al. Clin Infect Dis 2016. ²Dieterich DDW Abstract 606, ³McGinnis EASL Abstract LBP514, ⁴Neukam EASL Abstract LBP513

What is the impact of HIV on the effectiveness of current DAAs?


TRIO Network (US)¹

- Baseline characteristics
 - -80% GT1a
 - -70% Male
 - -21% African American
 - -35% Cirrhotic
 - -10% Platelets <100K/mL

VA Database (US)²

- 9,604 treated pts before 9/2015
 - -408 (4.2%) HIV-coinfected
 - -Majority G1 (75%) and male (96%)
 - -More cirrhotics in SIM/SOF grp (69%)

What is the impact of HIV on the effectiveness of current DAAs?

TRIO Network (US)¹

- Baseline characteristics
 - -80% GT1a
 - -70% Male
 - -21% African American

VA Database (US)²

- 9,604 treated pts before 9/2015
 - -408 (4.2%) HIV-coinfected
 - -Majority G1 (75%) and male (96%)
 - —More cirrhotics in SIM/SOF arp (69%)

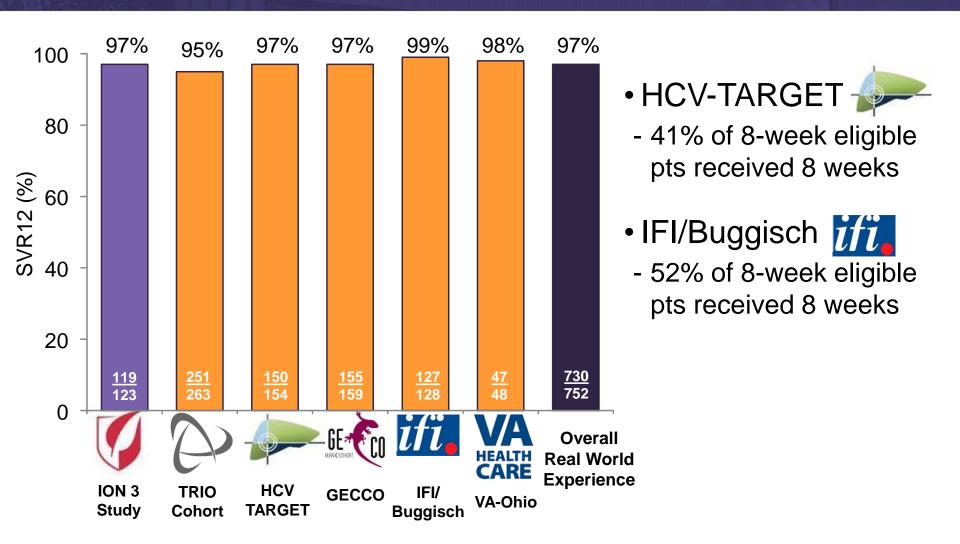
Clinical Implications:

- High SVR rates are achieved in HIV+ patients in routine practice.
- Consult and adhere to clinical treatment guidelines especially for drug-drug interactions with ART

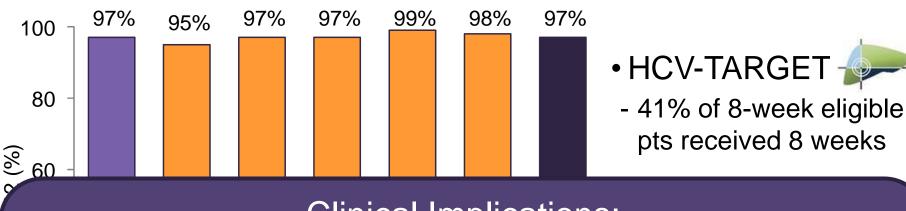
Can we shorten LDV/SOF to 8 weeks in some treatment naïve patients

Background:

- Post-hoc analysis of ION-3¹ demonstrated comparable relapse (2%) with 8 or 12 weeks of LDV/SOF in:
 - -Treatment naïve
 - –Non-cirrhotic
 - -BL HCV RNA<6 million IU/mL


Aims²:

- To evaluate the effectiveness of LDV/SOF x 8wks in real-world
- Compare SVR data from ION-3 to real-world cohorts


Methods:

- ION-3 Study (N=123)
- 3 prospective multicenter real world cohorts
- HCV-TARGET (US) (N=154)
- TRIO Network (US) (N=263)
- GECCO (Germany) (N=245)
- 2 retrospective single center real world cohorts
- IFI/Buggisch(Germany) (N=130)
- VA-Ohio (US) (N=60)

Can we shorten LDV/SOF to 8 weeks in some treatment naïve patients

Can we shorten LDV/SOF to 8 weeks in some treatment naïve patients

Clinical Implications:

- ❖8-week LDV/SOF is highly efficacious and underutilized
- Consider in appropriate patients
 - Treatment naïve, non-cirrhotic, baseline HCV RNA <6 million IU/mL
- ❖Not enough data in HIV-coinfected

Background:

- LDV solubility ↓ as pH ↑
- Recommend limiting PPI to equivalent of omeprazole 20mg¹
- HCV-TARGET reported lower SVR (-4.3%, absolute) among pts on baseline PPI

Aim³:

To evaluate the impact of PPI type, dose, and duration on SVR in real world pts treated with LDV/SOF

Methods:

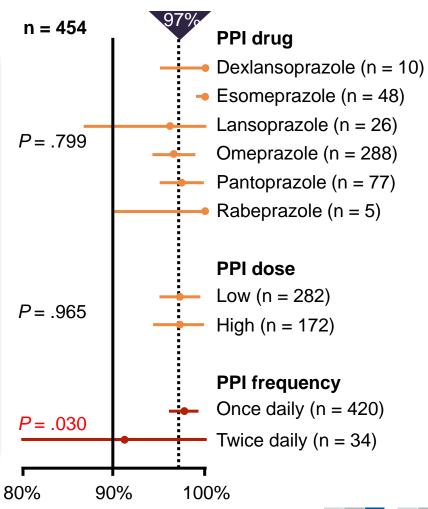
- TRIO Network (US)
- Prescription information through providers and specialty pharmacies
- Capture PPI use at any point during HCV tx (23% of pts)
- Most (62%) on low dose
- Vast majority (94%) remained on PPI throughout treatment
- Small number (6%) started PPI after HCV tx initiation, used intermittently, or d/c'd PPI

Results¹:

- No difference in SVR by PPI use
 96% in no PPI vs 94% in PPI (p=0.22)
- No difference in SVR by PPI use when stratified by tx duration
- Matched Propensity Analysis:

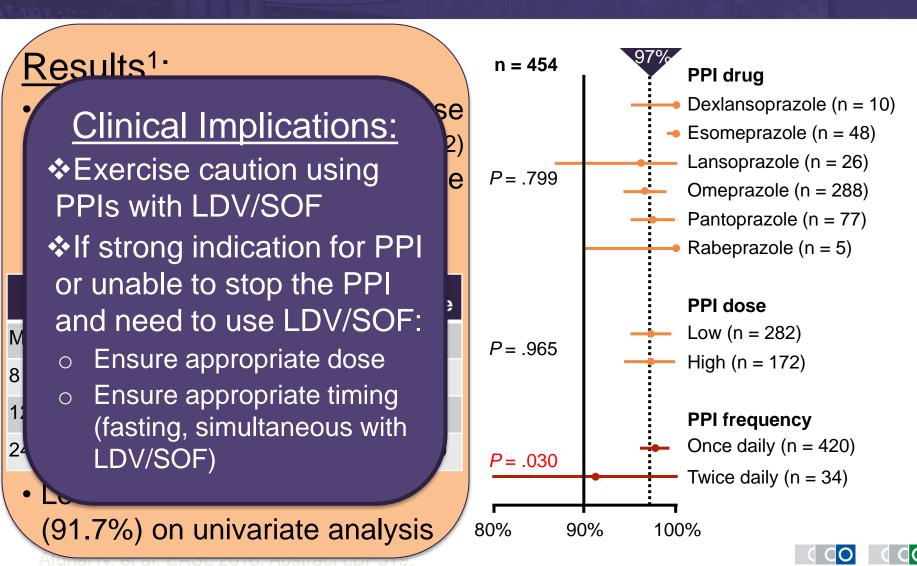
	PPI n=444	No PPI n=443	P value
Matched pop. (n=887)	97.3%	97.2%	0.99
8 weeks (n=82)	100%	97.5%	1.00
12 weeks (n=588)	96.6%	96.9%	0.81
24 weeks (n=217)	98.1%	98.1%	1.00

 Lower SVR with BID PPI (91.7%) on univariate analysis


¹Afdhal EASL Abstract LBP519

Results¹:

- No difference in SVR by PPI use
 96% in no PPI vs 94% in PPI (p=0.22)
- No difference in SVR by PPI use when stratified by tx duration
- Matched Propensity Analysis:

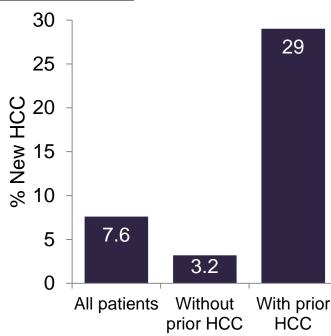

	PPI n=444	No PPI n=443	P value
Matched pop. (n=887)	97.3%	97.2%	0.99
8 weeks (n=82)	100%	97.5%	1.00
12 weeks (n=588)	96.6%	96.9%	0.81
24 weeks (n=217)	98.1%	98.1%	1.00

 Lower SVR with BID PPI (91.7%) on univariate analysis

Slide credit: clinicaloptions.com

What is the risk of HCC after HCV cure with DAAs?

Background:


- SVR with IFN-based tx reduces HCC risk in pts with advanced fibrosis¹
- Unexpectedly high HCC recurrence seen in 103 pts treated with DAAs²

Aim³: To evaluate the effect of DAA tx on HCC in pts with cirrhosis

Methods:

- Retrospective study of 344 HCV+ pts with cirrhosis (CPT A/B): 17% h/o HCC
- Baseline and 12-24 week post-treatment U/S (+CT or MRI if indeterminate)

Results:

- Factors a/w HCC:
 - Prior HCC
 - CPT class B
 - Liver stiffness >21.3
 - Treatment experience

What is the risk of HCC after HCV cure with DAAs?

Background:

 SVR with IFN-based tx reduces HCC risk in pts with advanced fibrosis¹

Results:

25

30

29

Clinical Implications:

- ❖No clear short-term benefit of DAAs on HCC risk
 - Impact on HCC recurrence in pts with HCC history warrants further investigation
- ❖HCC risk persists after DAA therapy in patients with HCV cirrhosis: monitoring for HCC after SVR should continue

WITH CITHOSIS (CFT AVD). 17% 11/0 FICE

 Baseline and 12-24 week post-treatment U/S (+CT or MRI if indeterminate)

- Prior HCC
- CPT class B
- Liver stiffness >21.3
- Treatment experience

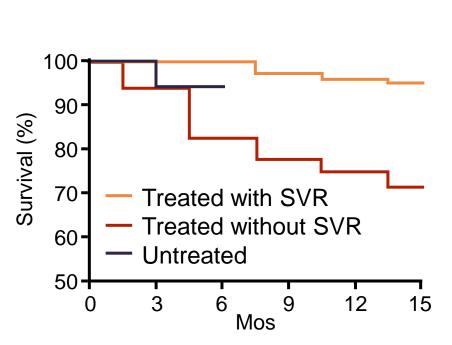
Background:

- Good safety and efficacy for DAAs in compensated cirrhosis
- Clinical trials in decompensated cirrhotics demonstrate stabilization/ improvement of MELD and CPT scores in majority^{1,2}
- Improvement in portal hypertensive complications seen with SVR³

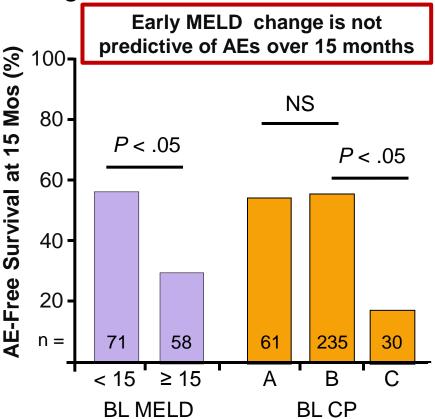
Aim: To evaluate virologic and functional outcomes up to 12 months after end of DAA therapy in advanced HCV cirrhosis compared to untreated pts

Methods:

- HCV Research UK Database
- Subset treated through Expanded Access
 Program (EAP) (SOF + LDV or DCV +/-RBV)
- Enrolled 6 months before EAP start
- n=261; subsequently treated n=177
- Enrolled at/after EAP start and treated
- n=409; SVR in 80% (329/409)

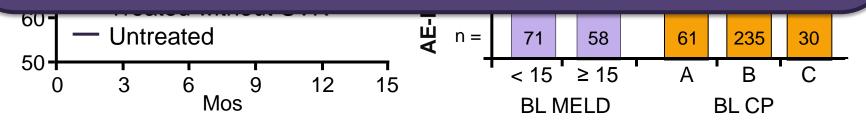

Results:

 First 6 months (includes 3 months tx)- treated pts benefit


Event		Untreated (n = 261)
Death	3.2	5.7
Decompensation	17.6	28.0*
New HCC	4.6	8.0
Sepsis	6.6	5.7
New OLT	6.6	3.8
Hospital admission	32.5	31.8
MELD worsening > 2	23.0	37.9*
Total adverse outcomes	52.1	63.6*

^{*}p<0.05

 HCV treatment benefit limited to pts with SVR


 AE-free survival significantly greater for CP B vs CP C

 HCV treatment benefit limited to pts with SVR AE-free survival significantly greater for CP B vs CP C

Clinical Implications:

- ❖Viral clearance leads to prolonged improvement in most CP-B pts
- ❖The most advanced pts (CP-C, MELD ≥18) have more SAEs, high short-term mortality and are less likely to derive long-term benefit
- ❖Refer decompensated cirrhotics to experienced HCV provider, ideally liver transplant center

RESISTANCE RELAPSE RETREATMENT

Background:

- Baseline NS5A RAVs impact treatment course with EBR/GRZ in patients with GT1a¹
- Baseline RAV testing is not routinely performed before using other DAA regimens

Background:

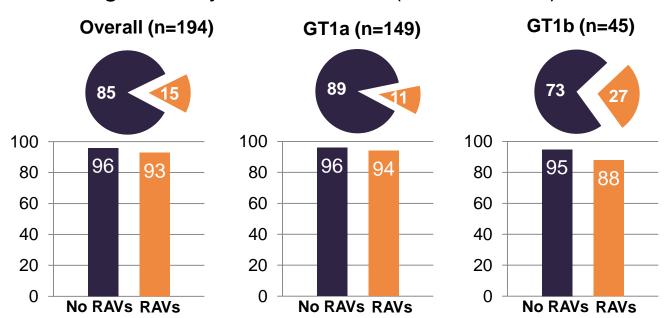
- Baseline NS5A RAVs impact treatment course with EBR/GRZ in patients with GT1a¹
- Baseline RAV testing is not routinely performed before using other DAA regimens

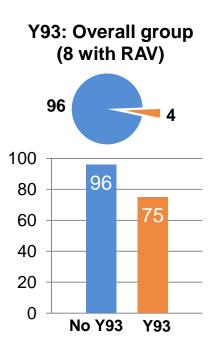
Aim²:

- Describe the prevalence of NS3, NS5A, and NS4B RAVS in real-world cohort of GT1 patients
- Evaluate the impact of baseline RAVs on effectiveness of therapy with LDV/SOF and SMV/SOF +/- RBV

Methods:

- HCV-TARGET (US)
 - –Multicenter, prospective, observational cohort
 - -492 in RAV prevalence and472 in efficacy analyses
 - Monogram biosciences assay used (pop sequence, 10% variant reporting threshold)

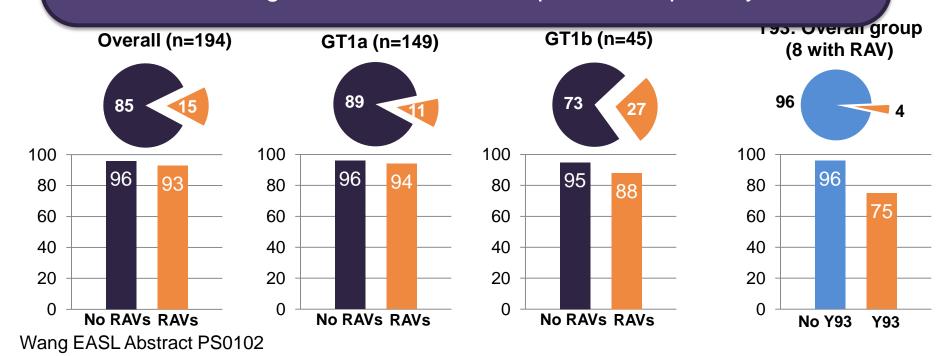

Results:


- Baseline RAV prevalence
 - —NS3: 45% GT1a>GT1b
 - -NS5A: 13% GT1b>GT1a
 - -NS5B: 8%

¹Zepatier package insert, ²Wang EASL Abstract PS0102

Results: LDV/SOF

- Baseline LDV RAVs at 28, 30, 31, 58, or 93
 - Non-significant 1% to 7% lower SVR12 depending on subgroup
- Baseline Y93 RAV
 - Infrequent (4%)
 - Significantly lower SVR12 (96% vs 75%)



Wang EASL Abstract PS0102

Results: LDV/SOF

Clinical Implications: LDV/SOF:

- ❖Does not support routine baseline NS5A testing in DAA-naïve pts
- Consider testing in "difficult to treat" patient populations
- ❖Consider adding RBV if baseline RAV present, especially if Y93

Background:

- Baseline NS5A RAVs impact treatment course with EBR/GRZ in patients with GT1a¹
- Baseline RAV testing is not routinely performed before using other DAA regimens

Methods:

- Analysis of data from 5 phase III trials using OPrD on label
 - Next generation sequencing at 1% and 15% detection thresholds

Aim²:

Describe the prevalence of baseline RAVs and their impact on SVR in pts from phase 3 trials treated with OPrD +/- RBV

Results:

- GT1b: 100% SVR regardless of baseline RAVs
- GT1a:
 - —non-significant 4% lower SVR with baseline NS5A RAVs
 - —similar SVR rates with and without other RAVs

¹Zepatier package insert, ²Sarrazin EASL Abstract LBP503

Background:

- Baseline NS5A RAVs impact
 - treatment patients
- Baseline performe regimen.

Clinical Implications: OPrD:

- Does not support routine baseline NS5A testing
- Does not change current management

Methods:

- Analysis of data from 5
 - g OPrD
 - quencing at

Aim²:

Describe the prevalence of baseline RAVs and their impact on SVR in pts from phase 3 trials treated with OPrD +/- RBV

Results:

- GT1b: 100% SVR regardless of baseline RAVs
- GT1a:
 - –non-significant 4% lower SVR with baseline NS5A RAVs
 - —similar SVR rates with and without other RAVs

¹Zepatier package insert, ²Sarrazin EASL Abstract LBP503

Does 12 week SVR really mean cure?

Aim: To determine long-term virologic and clinical outcomes in pts treated with DAAs using registry study data

Methods: Ongoing 3-yr registry of HCV pts treated in a Gilead-sponsored studies

Results:

- SVR: maintained in 99.7% (5414/5433)
 - -6 pts (0.1%) with late relapse
 - -12 pts (0.2%) with reinfection
 - —1 pt unable to determine relapse vs reinfection

Results:

- 6 pts with late relapse
 - Time to relapse from EOT 218-429 days
 - -3 GT1a, 3 GT3a
- 12 with reinfection
 - —Time to reinfection 253-1086 days post-treatment

Clinical Implications:

- ❖SVR12 is durable: SVR=Cure
 - Low rate of late relapse (0.1%)
- ❖Reinfection is not common in clinical trial population
- Reinfection rates may be different in real world populations
 - O High reinfection rates in HIV+ MSM in W. Europe (Martin EASL Abstract PS006) and HIV+ IDU (Martinello EASL Abstract FRI-184)
- Counsel patients on reinfection prevention
- -1 pt unable to determine relapse vs reinfection

26

Background:

- Treatment failure is linked to selection of RAVs
- Selected NS3 RAVs do not persist long-term¹
- Selected NS5A RAVs persist >2 years post-treatment²
 - Broad cross-resistance impacts retreatment strategies

Methods³:

- Open-label, Phase 2 study using
 OPrD + SOF + RBV for 12 or 24 wks in
 GT1 pts who failed DAA treatment
 - -16/22 failed OPr(D) regimen

Results:

- All 22 had RAVs prior to treatment
- Most common positions:

NS3: Q80(n=15), D168(n=5)

NS5A: Q30(n=12), M28(n=10), Y93(n=4)

NS5B: S556(n=7)

- Overall SVR 95% (21/22)
 - —1 relapse: GT1a, non-cirrhotic, prior telaprevir experience, NS3 Q80K and no other RAVs (at baseline and failure)

Background:

 Treatment failure is linked to selection of PAVs

Results:

All 22 had RAVs prior to

• Se

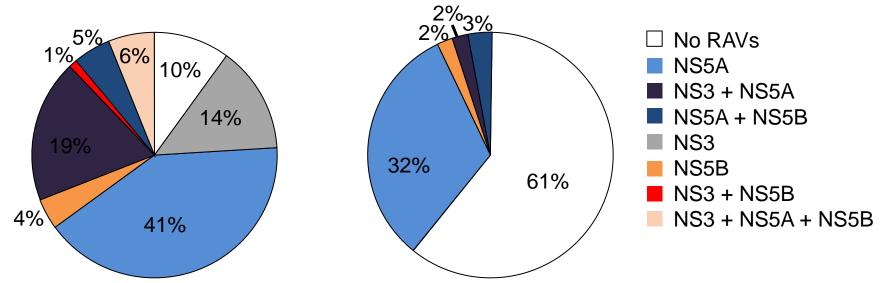
Clinical Implications:

- ♦ OPrD + SOF + RBV is effective in retreatment after DAA failure
- ❖Not applicable for patients with decompensation, GFR<30, or RBV-ineligible
- ❖May be cost-prohibitive

-16/22 failed OPr(D) regimen

Mei

Open-label, Phase 2 study using
 OPrD + SOF + RBV for 12 or 24 wks in
 GT1 pts who failed DAA treatment


Q80K and no other RAVs (at baseline and failure)

n=4)

¹Lenz EASL 2014, ²Wyles EASL 2015, ³Poordad DDW Abstract 604

- Data from large German resistance database: N = 3549
 - 9% of pts with IFN-free DAA regimen failure (n = 310; excludes pts with GT1 HCV treated with SOF + RBV)
- Resistance analysis for drug class-specific RAVs with > 2-fold EC₅₀ increase in 195 GT1 and 69 GT3 pts

GT1 (n = 195): 90% With RAVs GT3 (n = 69)*: 39% With RAVs

*Previous GT3 tx: SOF + RBV (n = 33); DCV + SOF \pm RBV (n = 20); LDV/SOF \pm RBV (n = 15); SMV + SOF \pm RBV (n = 1).

Slide credit: clinicaloptions.com

Previous DAA Regimen Failure	Retreatment Regimen	SVR12
GT1: SMV + SOF ± RBV	NS5A inhibitor-containing regimen	91%
	■ LDV/SOF ± RBV 12 wks	8/8
	■ LDV/SOF ± RBV 24 wks	9/10
	OBV/PTV/RTV + DSV ± RBV 12 wks	3/3
	OBV/PTV/RTV + DSV + RBV 24 wks	0/1
GT1: DCV or LDV + SOF ± RBV	PI-containing regimen	86%
	■ SMV + SOF ± RBV 12 wks	2/2
	SMV + SOF ± RBV 24 wks	1/1
	OBV/PTV/RTV + DSV ± RBV 12 wks	3/4
GT3: SOF + RBV	NS5A inhibitor-containing regimen	100%
	DCV + SOF + RBV 12 wks	2/2
	■ DCV + SOF ± RBV 24 wks	4/4
	LDV/SOF + RBV 24 wks	1/1

Previous DAA Regimen Failure

Retreatment Regimen

SVR12

GT1: SMV + SOF + RBV

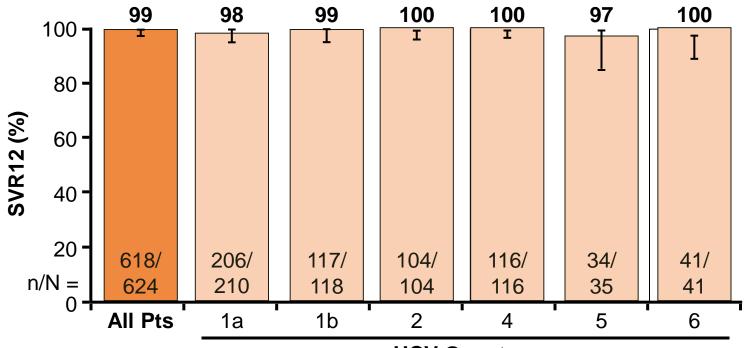
NS5A inhibitor-containing regimen

91%

Clinical Implications:

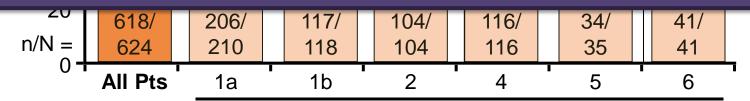
- RAV testing in DAA failures should be performed before considering retreatment
- High SVR rates using individualized treatment approach based on RAV analysis:
 - Switching to different DAA class when available
 - Adding ribavirin
 - Extending treatment duration

LDV/SOF + RBV 24 wks


1/1

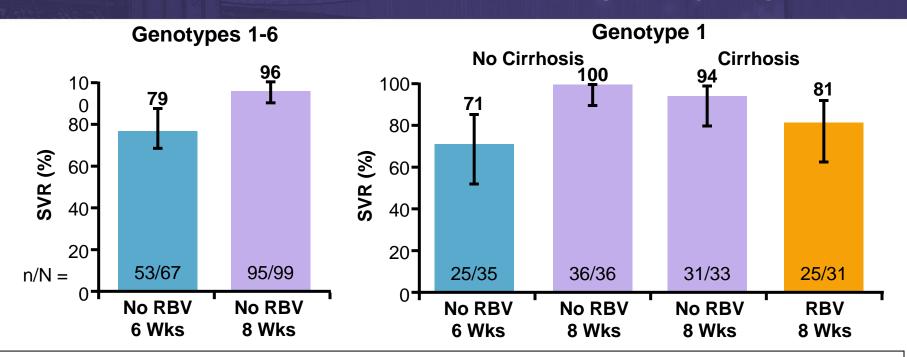
AFXI GENERALON

ASTRAL-1: Sofosbuvir/Velpatasvir for GT1, 2, 4, 5, 6 HCV

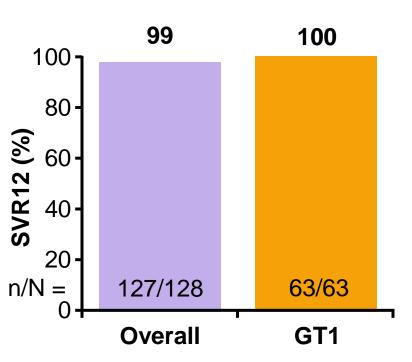

- Double-blind, placebo-controlled trial (N = 740), tx naive or experienced
 - Pts randomized 5:1 to sofosbuvir/velpatasvir or placebo for 12 wks
 - Key baseline characteristics: cirrhosis 19%, tx exp'd 32%, BL NS5A RAVs 42%
- No impact of cirrhosis, tx experience, BL NS5A RAVs on SVR12 rates

ASTRAL-1: Sofosbuvir/Velpatasvir for GT1, 2, 4, 5, 6 HCV

New Data from EASL and DDW:

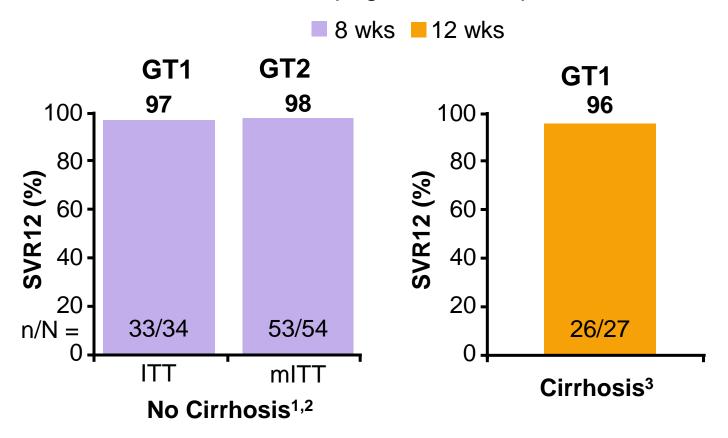

- **♦** ASTRAL-5: Safe and efficacious in HIV/HCV (Wyles EASL Abstract PS0104)
- ❖ASTRAL-4: High SVR rates in decompensated cirrhotics (GT3 required RBV to achieve high rates) (Brown DDW Abstract 754)
- ❖VEL/SOF + RBV x 24wks after VEL/SOF failure (Asselah EASL Abstract PS024)
 - ❖GT1 (n=34): 97% SVR: RAVs had no effect on SVR
 - ❖GT2 (n=14): 91% SVR: RAVs had no effect on SVR
 - ❖GT3 (n=17): 76% SVR: 9/11 (82%) SVR among pts with GT3 and Y93H

HCV Genotype


VEL/SOF + GS-9857 for 6 or 8 Wks in Treatment-Naive Pts With GT1-6 HCV

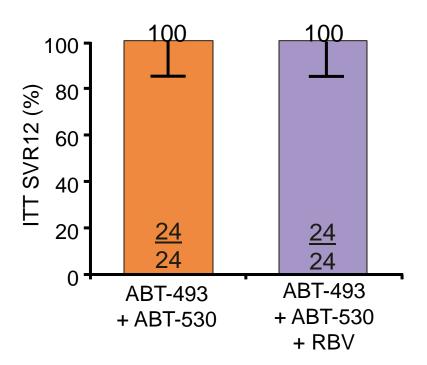
- •8 wks of VEL/SOF+GS9857 highly effective including pts with RAVs and cirrhosis
- No benefit of RBV with 8 wks
- •Will the triplet be used as primary first-line treatment or as salvage treatment for persons who fail current DAAs?

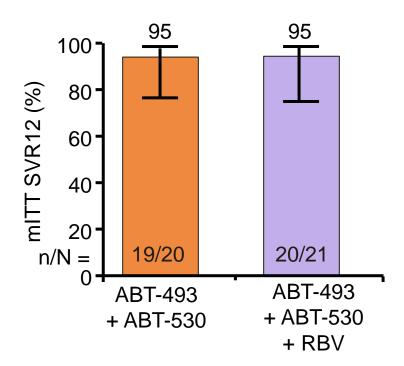
VEL/SOF + GS-9857 for 12 Wks in Treatment-Experienced GT1-6 HCV


BL Characteristics (N = 128)	VEL/SOF + GS-9857
Cirrhosis, n (%)	61 (48)
Mean HCV RNA, log ₁₀ IU/mL (range)	6.3 (3.8-8.1)
HCV genotype, n (%)	
■ 1	63 (49)
2	21 (16)
■ 3	35 (27)
4 /6	9 (7)
DAA experience, n (%)	
■ None (GT2-6 only)	27 (21)
■ 1 DAA class	36 (28)
■ ≥ 2 DAA classes	65 (51)

1 pt relapsed at post-treatment Wk 8: GT3, cirrhosis, prior SOF-failure, baseline Y93H

SURVEYOR-I/II: ABT-493 + ABT-530 in Genotype 1 and 2


- ABT-493 + ABT-530: pan-genotypic 2nd-generation DAA combination
- Open-label, treatment naive or pegIFN/RBV experienced



ABT-493 + ABT-530 ± RBV x 12 Weeks

Genotype 3, Compensated Cirrhosis¹ 18/48 pts had NS3 and/or NS5A RAVs at BL

Genotype 1, Non-Cirrhotic, DAA Failures² 92% with NS3 and/or NS5A RAVs at BL

¹Kwo PY EASL Abstract LBO1, ²Poordad EASL Abstract GS11

What about HBV?

© 2009 mark du toit.

Tenofovir Alafenamide Compared with Tenofovir Disoproxil in Chronic HBV

Background:

- Tenofovir alafenamide (TAF)
 - Tenofovir (TFV) prodrug with greater plasma stability than TDF
 - Enhances delivery of active drug to hepatocytes
 - Lower circulating TFV relatively to TDF
 - Improved bone and renal safety in HIV+ pts

Methods:

- Double-blind, active-controlled, Phase 3 study
- 2:1 randomization to TAF 25 mg daily or TDF 300 mg daily
- Primary endpoint measures at 48 weeks

Results:

- HBeAg positive¹ and HBeAg negative², compared to TDF:
 - Higher rates of ALT normalization
 - Similar proportion w/undetected
 HBV DNA at 48 wks
 - –Similar HBeAg loss and seroconversion
 - —Significantly <u>less</u> declines in hip and spine BMD
 - —Significantly <u>smaller</u> Cr increases

Tenofovir Alafenamide Compared with Tenofovir Disoproxil in Chronic HBV

Background:

Clinical Implications:

- ❖TAF is as efficacious as TDF with more favorable side effect profile
- ❖TAF not clinically approved for treatment of chronic HBV
 - New drug application submitted to FDA January 2016
- ❖TAF-based regimens are clinically available for treatment of HIV
 - Elvitegravir/Cobicistat/Emtricitabine/TAF (Approved Nov 2015)
 - Emtricitabine/Rilpivirine/TAF (Approved March 2016)
 - Emtricitabine/TAF (Approved April 2016)

Take Home Points: HCV Cohort Data

- Excellent SVR rates achieved in routine clinical practice
 - Consult and adhere to clinical treatment guidelines
- ✓ 8-week LDV/SOF regimen is highly efficacious and underutilized in eligible GT1 patients
- ✓ Caution using PPIs with LDV/SOF
- ✓ HCC risk persists in patients with advanced fibrosis after cure- continue monitoring after SVR
- Decompensated patients should be referred to an experienced HCV provider, ideally at a LT center

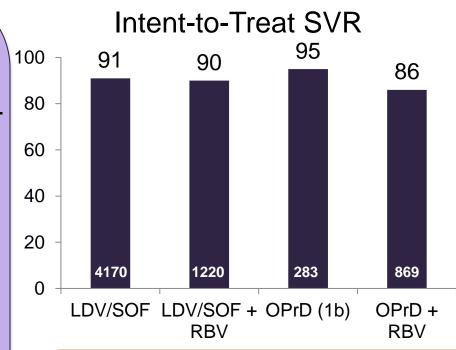
Take Home Points: Resistance, Relapse, Retreatment

- ✓ DAA Naïve pts: Consider baseline RAV testing in "difficult to cure" populations before LDV/SOF treatment
- ✓ SVR12 is durable and = HCV cure (0.1% late relapse)
- DAA Failures: RAV testing should be performed before considering retreatment
 - ✓ If don't want to wait to treat, individualized approach with available DAAs yields high SVR
 - ✓ If acceptable to wait, high SVRs can be achieved with next generation antivirals

Take Home Points: Next Generation Antivirals

- ✓ VEL/SOF: pan-genotypic, high SVR with 12 weeks
- ✓ VEL/SOF + GS-9857 and ABT-493 + ABT-530
 - ✓ DAA naïve: highly effective, short duration (8 weeks)
 - ✓ DAA failures: excellent SVR rates with 12 weeks
- ✓ Tenofovir Alafenamide (TAF) for chronic HBV
 - ✓ As efficacious as TDF (and higher rate of ALT normalization)
 - ✓ More favorable side effect profile
 - Currently available in combination regimens for HIV

Thank you!


Do baseline NS5A RAVs impact LDV/SOF or OPrD efficacy?

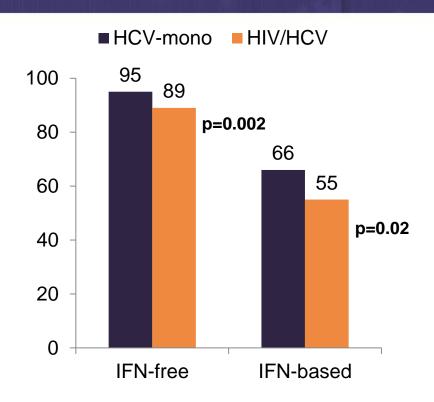
Fold-change in EC50			1b			
Position	M28T	Q30R	L31M/V	Y93H/N	L31V	Y93H/N
Ledipasvir	20x	>100x	>100x/ >100x	>1,000x/ >10,000	20X	>100x/?
Ombitasvir	>1000x	>100x	<3x >100x	>10,000x/ >10,000x	<10x	20x/50x
Daclatasvir	>100x	>1000x	>100x/ >1000x	>1,000x/ >10,000x	<10x	20x/50x
Elbasvir	20x	>100x	>10x >100x	>1,000x/ >1,000x	<10x	>100x/
Velpatasvir	<10x	<3x	20x/50x	100x/ >1000x	<3x/	<3x/

What is the REAL WORLD effectiveness of current DAA regimens?

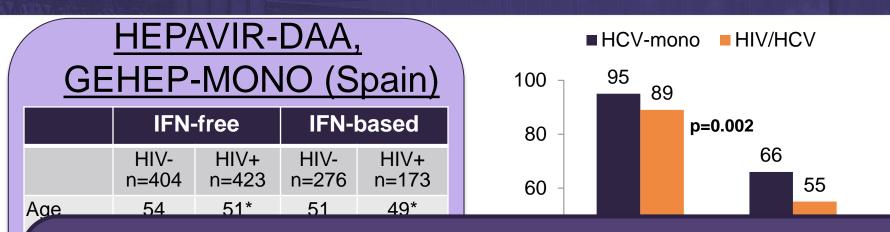
VA Clinical Case Registry:

- GT1 pts at 126 VA facilities
 - Ledipasvir/sofosbuvir (LDV/SOF) +/-RBV
 - Ombitasvir/paritaprevir/ritonavir + dasabuvir (OPrD) +/- RBV
- Limited to pts treated ≤12 wks
- Baseline characteristics
 - -29-47% African American
 - -26-45% BMI ≥ 30 kg/m²
 - -2-5% HIV-coinfected
 - 11-52% FIB-4 > 3.25
 - 16-53% Treatment experienced

Predictors of SVR*:


- •BMI ≥ 30 kg/m²
 - OR 0.66 (95% CI 0.49-0.88)
- •FIB-4>3.25
 - OR 0.46 (95% CI 0.35-0.60)

^{*}Among pts who completed 12 weeks (N=4720)


What is the impact of HIV on the effectiveness of current DAAs?

HEPAVIR-DAA, GEHEP-MONO (Spain)

	IFN-	free	IFN-I	oased	
	HIV- n=404	HIV+ n=423	HIV- n=276	HIV+ n=173	
Age	54	51*	51	49*	
Male	67%	82%*	75%	84%**	
GT 1	83%	67%*	91%	93%*	
Cirrhosis	52%	64%*	50%	67%*	
*p<0.001, **p=0.02					

What is the impact of HIV on the effectiveness of current DAAs?

Clinical Implications:

- High SVR rates are achieved in HIV+ patients in routine practice
- Consult and adhere to clinical treatment guidelines especially for drug-drug interactions with ART

HCV/HIV DDIs With Components of Selected ART Regimens

	SOF + SIM	SOF/LDV	SOF + DCV	PTV/RTV/OBV + DSV	GZR/EBV
Atazanavir + RTV	X	≈	≈	$\sqrt{}$	X
Darunavir + RTV	X	≈	$\sqrt{}$	X	X
Raltegravir	V	V	V	V	$\sqrt{}$
Dolutegravir	V	V	V	V	$\sqrt{}$
Elvitegravir + COBI	X	≈	≈	≈	X
Elvitegravir/COBI/ TAF/emtricitabine	Х	√*	≈	X*	X
Efavirenz	X	≈	≈	X	X
Rilpivirine	V	V	V	X	$\sqrt{}$
Abacavir/lamivudine	V	V	√ †	V	$\sqrt{}$
Tenofovir DF/ emtricitabine	V	≈ nephrotoxicity	V	V	V

No clinically significant interaction expected

[■] Potential interaction may require adjustment to dosage, timing of administration, or monitoring

Do not coadminister

^{*}EVG/COBI/TAF/FTC [package insert]. †Liverpool Drug Interactions Group.

What is the risk of HCC after HCV cure with DAAs?

<u>Aim:</u> To determine long-term virologic and clinical outcomes in pts treated with DAAs using registry study data

Results:

• SVR: HCC in 0.3% (16/5433)

Clinical Implications:

- ❖No clear short-term benefit of DAAs on HCC risk
 - Impact on HCC recurrence in pts with HCC history warrants further investigation
- HCC risk persists after DAA therapy in patients with HCV cirrhosis: monitoring for HCC after SVR should continue

	SVR	n=1086	n=900	n=602	n=319	n=150	n=60	n=4
Cirrhotic	HCC	5 (<1)	5 (<1)	6 (1)	3 (<1)	0	0	0
Cirriotic	Non-SVR	n=117	n=90	n=83	n=50	n=41	n=7	n=0

Will my patient with decompensated cirrhosis get better with treatment?

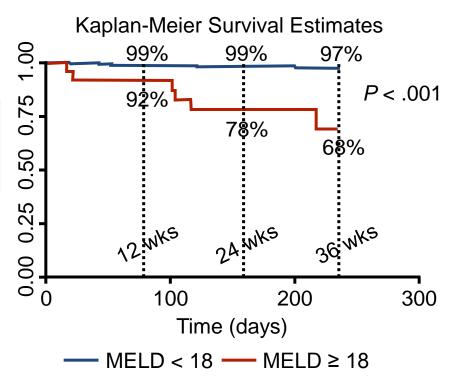
Background:

- Good safety and efficacy for DAAs in compensated cirrhosis
- Clinical trials in decompensated cirrhotics demonstrate stabilization/ improvement of MELD and CPT scores in majority^{1,2}
- Improvement in portal hypertensive complications seen with SVR³

Aim⁴: To evaluate factors that may identify patients with advanced cirrhosis most likely to benefit from treatment

Methods:

- HEPA-C registry (Spain)
- Retrospective study of non-LT candidates or pts listed for LT but did not receive LT during/within 12 wks after tx
 - CPT A: 564 (70%), 7% w/HCC
 - CPT B/C: 175 (30%), 10% w/HCC
- Received 12-24 wks tx with various regimens +/- RBV
 - SIM+SOF: 45% SOF: 3%
 - DCV+SOF: 22% -DCV+SIM: 2%
- LDV/SOF: 16% -PrD: 2%
- -OPrD: 10%


¹Manns M et al Lancet ID 2016, ²Curry MP et al. NEJM 2015,

³Saxena AASLD 2015 Abstract 1825, ⁴Fernandez-Carrillo EASL Abstract GS01

Will my patient with decompensated cirrhosis get better with treatment?

- SVR12 rate lower for CP B/C vs CP A (78% vs 94%; P < .001)
- SAE incidence higher for CP B/C vs CP A (50% vs 11.7%; P < .001)
- Death rate higher for CP B/C vs CP A (6.4 % vs 0.9%; P < .001)

	SAE	Ξ	Death (On Study)		
Predictor	OR Multiv. (95% CI) <i>P</i> Value		OR (95% CI)	Multiv. <i>P</i> Value	
CP B/C vs A	2.16 (1.29-3.64)	.004	1.73 (0.39-7.64)	.034	
MELD	1.31 (1.2-1.43)	< .001	1.34 (1.16-1.53)	< .001	
MELD ≥ 18	NR	.171	NR	< .001	
Platelets	0.99 (0.98-0.99)	.008	1.002 (0.99-1.02)	.151	
Platelets < 100,000	2.94 (1.8-4.8)	< .001	NR	.711	

