1ST ANNUAL NCSCG **POST-AASLD** SYMPOSIUM

Jointly provided by the University Of Cincinnati College Of Medicine and the Northern California Society for Clinical Gastroenterology.

Current and Developing Strategies in the Management of HCC

Francis Yao, MD

Professor of Clinical Medicine and Surgery

Medical Director, Liver Transplantation University of California, San Francisco I have no financial relationships to disclose within the past 12 months relevant to my presentation AND

My presentation does not include discussion of off-label or investigational use

Overview

- Diagnostic criteria for HCC (update)
- Surveillance
- HCC and HBV
- Liver transplant for HCC

Overview

- Diagnostic criteria for HCC (update)
- Surveillance
- HCC and HBV
- Liver transplant for HCC

No major breakthrough in HCC treatment

DIAGNOSTIC CRITERIA FOR HCC AASLD GUIDELINES (MODIFIED)

<u>Tumor > 1 cm</u> - One imaging (multi-phase CT/MRI) showing typical HCC characteristics*

* Arterial phase hypervascularity and delayed phase "washout"

Liver biopsy is not necessary for confirming diagnosis, but recommended if imaging criteria not met

DIAGNOSIS OF HCC – LIVER BIOPSY?

Biopsy not always necessary to confirm diagnosis of HCC if the lesion meets radiologic criteria in the appropriate clinical setting

- False negative biopsy common in clinical practice and may lead to delay in diagnosis and treatment
- Tumor seeding along the biopsy tract in 1-5 %

Biopsy in selected cases if atypical radiologic appearance or lack of strong risk factor for HCC

LIVER IMAGING REPORTING AND DATA SYSTEM (LI-RADS)

American College of Radiology: Standardized reporting of CT or MRI imaging for HCC in patients with cirrhosis or other risk factors

LI-RADS 1: Definite benign

LI-RADS 2: Probable benign

LI-RADS 3: Indeterminate

LI-RADS 4: Probable HCC

LI-RADS 5: Definite HCC

LI-RADS MAJOR DIAGNOSTIC CRITERIA

- Arterial phase hyper-enhancement
- Delayed phase "washout"
- Pseudo-capsule
- Interval growth ≥50% within 6 months

Different diagnostic criteria for lesion ≥2 cm versus <2 cm

HCC - RADIOLOGIC DIAGNOSIS

Arterial Phase

Hyper-enhancement

Portal Venous phase

"washout"

HCC – RADIOLOGIC DIAGNOSIS

Arterial Phase

Portal Venous phase

LIVER IMAGING REPORTING AND DATA SYSTEM (LI-RADS)

LIVER MASS

LIVER IMAGING REPORTING AND DATA SYSTEM (LI-RADS)

LIVER MASS

UNOS imaging criteria for HCC in determining MELD exception listing: LIRADS 5 May miss HCC with atypical features (hypo-vascular HCC)

RISING INCIDENCE OF HCC IN U.S.

El-Serag H. N Engl J Med 2011;365:1118-1127 (with permission)

Abstract # 166 (Parallel Session; November 10, 2014)

Hepatocellular Carcinoma Surveillance among Cirrhotic Patients with Commercial Health Insurance

<u>David S. Goldberg</u>^{1,2}; Adriana Valderrama³; Rajesh Kamalakar³; Sujit S Sansgiry⁴; Svetlana Babajanyan³; James D. Lewis^{1,2}

- 1. Division of Gastroenterology, University of Pennsylvania, PA;
- 2. Center for Clinical Epidemiology, University of Pennsylvania, PA;
- 3. Bayer HealthCare, Whippany, NJ;
- 4. University of Houston College of Pharmacy, TX

Introduction

- HCC occurs almost exclusively in the setting of chronic liver disease^{1,2}
- Most cancers are diagnosed at advanced stage
 - Curable if diagnosed at early stage
- Since 2005, AASLD guidelines recommend HCC surveillance every 6 months for cirrhotic patients³
 - Based on 1 RCT and several observational studies
 - Aligned with EASL guidelines

^{1.} Bruix J, Sherman M. Hepatology 2011; 53(3): 1020-22

^{2.} El Serag HB. N Eng J Med 2011; 365 (12): 1118-1127

^{3.} Bruix J, Sherman M. Hepatology 2005; 42(2): 1208-1236.

Introduction

- Previous population-based studies are limited to Medicare, VA, or Medicaid population^{1,2,3}
 - Low HCC surveillance rates (30-40%)
 - Limited generalizability to broader population with commercial health insurance (55% US adults)
- It is unknown how frequently patients with commercial insurance receive surveillance

^{1.} Davila JA, et al. Annals of Internal Medicine 2010; 52(1): 132-141

^{2.} Palmer LB, et al. J Clin Gastroenterol 2013; 5: 501-512

^{3.} Davils JA, et al. Hepatology 2010; 52(1): 132-141

- Data source: Truven Health Analytics DatabasesTM
 - 100 large employers, health plans, and government and public organizations
 - Inpatient and outpatient healthcare utilization
 - Available data from 1/1/2002-12/31/2010

Inclusion criteria:

- Adults ≥18 years of age
- Cirrhosis: ICD-9-CM coding algorithm (571.2: alcoholic cirrhosis; or 571.5: cirrhosis of the liver without alcohol)^{1,2}
 - One inpatient or
 - Two outpatient ICD-9-CM cirrhosis

Exclusion:

- HCC during baseline or initial 12-month period
- Malignancy in baseline or 12-months follow-up
- Liver transplant during 12-month follow-up

^{1.} Goldberg DS, et al. Pharmacoepidemiol Drug Saf. 2013;22(1):103-107

^{2.} Nehra MS, et al. Journal of Clinical Gastroenterology 2013; 46(5): e50-54

- Outcomes
 - Primary: Abdominal ultrasound (CPT: 76700 or 76705)
 - Regardless of indication->any ultrasound serves as screening
 - Secondary: Contrast-enhanced CT and/or MRI
 - Outcome measures
 - Categorical: None, incomplete, complete
 - Continuous: Proportion of time up-to-date with surveillance (PUTDS)
 - 6-months "up-to-date" following each ultrasound
 - Calculated: (# months up-to-date) / (# months follow-up)
- Statistical analysis:
 - Categorical outcome: Multinomial logistic regression
 - Continuous outcome: Linear regression

Baseline Characteristics, n=8,916

Characteristics	
Median age in years, IQR	56 (50-62)
Male gender, No. (%)	5,180 (58.1)
Geographic region, No. (%)	
South	4,151 (46.6)
Northeast	837 (9.4)
North Central	2,340 (26.2)
West	1,565 (17.6)
Provider Specialty, No. (%)‡	
Gastroenterology	4,525(50.8)
Primary care/Internal Medicine	1,849(20.8)
Medical co-morbidities, No. (%)	
HIV	59(0.7)
Metabolic syndrome	6,293(70.6)
Hepatic decompensation prior to index date, N. (%)	4,553(51.1)
Etiology of liver disease identified on or prior to index date	
Alcoholic liver disease	3,798(42.6)
Hepatitis C	2,239(25.1)
Hepatitis B	511(5.7)
Alpha-1-Antitrypsin deficiency	18(0.2)
Hemochromatosis/iron overload	155(1.7)
Wilsons disease	14(0.2)
Budd-chiari syndrome	17(0.2)
Primary sclerosing cholangitis	145(1.6)
Primary biliary cirrhosis	464(5.2)
Median follow-up in months, IQR	22.93(16.17-33.87)

Categorical and Continuous Measures of HCC Surveillance

	Outcome				
Follow-up period	Categorical, N. (%)			Continuous PTUDS	
	Complete	Incomplete	None	Mean (SD)	Median (IQR)
All follow-up, n=8,916	785 (8.8)	4,943 (55.4)	3,188 (35.8)	0.34 (0.29)	0.31 (0.03-0.52)
Months 0-12, n=8,916	1,327 (14.9)	3,544 (39.8)	4,045 (45.5)	0.38 (0.33)	0.48 (0.00-0.57)
Month 13-24, n=4,071	445 (10.9)	1,168 (28.7)	2,458 (60.4)	0.25 (0.32)	0.00 (0.00-0.50)

Number of Physician Visits and HCC Surveillance Patterns

Prior hepatic decompensation	Category	Number	Mean (SD) number of physician visit
No	Complete	290	1.8 (2.3)
	Incomplete	2251	1.1 (1.6)
	None	1822	0.6 (1.2)
Yes	Complete	495	2.8 (3.4)
	Incomplete	2692	1.5 (2.1)
	None	1366	1.1 (1.8)

Multinomial Logistic Regression Model

Variable	Multivariable Odds ratio (95% CI) for Incomplete	Multivariable odds ratio (95% CI) for None	P-value
Age at cirrhosis diagnosis	1.10 (0.10-1.02)	1.02 (1.01-1.02)	0.01
Insurance plan type			0.04
PPO/POS	Reference	Reference	
НМО	0.83 (0.65-1.06)	0.90 (0.70-1.17)	
Comprehensive	0.94 (0.68-1.30)	1.11 (0.80-1.53)	
Other*	3.53 (1.41-8.88)	3.60 (1.42-9.18)	
Provider specialty			<0.001
Gastrointestinal	Reference	Reference	
Primary care/Internal Medicine	1.11 (0.89-1.40)	1.83 (1.46-2.30)	
Internal medicine subspecialty	1.91 (0.85-4.31)	2.55 (1.12-5.80)	
Other provider type	1.20 (0.92-1.58)	1.82 (1.38-2.40)	
Prior hepatic decompensation	0.78 (0.64-0.95)	0.51 (0.41-0.62)	<0.001
≥1 component metabolic syndrome	0.78 (0.64-0.96)	0.77 (0.63-0.96)	0.05
Hepatitis C	0.91 (0.75-1.10)	0.69 (0.56-0.84)	<0.001

^{*} Other insurance subtype: consumer-directed, high-deductible, capitated point-of-service, or equivalent premium income health insurance

Conclusions

- HCC surveillance rates for commercially insured patients with cirrhosis remains poor despite formalized HCC surveillance guidelines
- Access to care variables are associated with surveillance rates
 - Even among those with favorable characteristics, surveillance rates are lower than expected
- Surveillance rates are highest in the first year of eligibility, with decline in subsequent years

Limitations

- Only determine if an ultrasound was performed, and not whether it was ordered but never completed
- Patient factors (compliance)
- Could not distinguish between incident (new diagnosis) versus prevalent (diagnosis before) cases of cirrhosis
- Surveillance every 6 or 12 months considered acceptable in previous practice guidelines

Abstract # 232 (Parallel Session; November 11, 2014)

Incidence of Hepatocellular Carcinoma in a US Cohort of Chronic Hepatitis B Patients by Age, Gender, Cirrhosis and Antiviral Treatment Status

<u>Derek Lin</u>¹; Nghia Nguyen²; Joseph Hoang¹; Vinh Vu ¹; Huy Trinh³; Jiayi Li⁴; Jian Zhang⁵; Huy Nguyen³; Khanh Nguyen³; Mindie Nguyen¹

- 1. Stanford University Medical Center, Palo Alto, CA;
- 2. University of California, San Diego, CA;
- 3. San Jose Gastroenterology, San Jose, CA;
- 4. Palo Alto Medical Foundation, Mountain View, CA
- 5. Chinese Hospital, San Francisco, CA

Background

- Studies from Asia and Europe have indicated reduced risk of HCC with treatment.
- In the US, the Chronic Hepatitis Cohort Study (CHeCS) also observed reduced HCC risk in treated patients.

Objective

- To examine the effect of anti-viral therapy for CHB on HCC incidence in a large San Francisco Bay Area cohort stratified by major HCC risk factors:
 - Age (< 45 or ≥45)</p>
 - Gender
 - Cirrhosis Status

- Retrospective cohort study of 3933 consecutive CHB identified by International Classification of Disease 9 (ICD-9) codes and verified by chart review.
- Study Period: 1991 to 2014
- Study Locations: 4 centers in the San Francisco Bay Area: two medical centers - Stanford University Medical Center and Chinese Hospital and two specialty community-based clinics - San Jose Gastroenterology and Palo Alto Medical Foundation.

Cirrhosis:

- Liver biopsy or imaging or
- Secondary criteria:
 - ascites, encephalopathy, splenomegaly, varices, or thrombocytopenia (platelet < 120,000/uL) with liver dysfunction

HCC:

- Liver biopsy or
- Radiographic evidence per AASLD guidelines (both 2005 and 2011)

3933 consecutive CHB patients

Exclusion Criteria

- 21 with inadequate follow up data
- 340 treated prior to clinic visit
- 32 previous diagnosis of HCC
- 1 cases of prevalent HCC (diagnosis within 1 yr of presentation)
- 318 with < 1 year follow-up

3221 included in primary analysis

Baseline Patient Characteristics

	Overall Cohort n=3221	Not Treated n=1983	Treated n=1238	<i>p</i> -value
Age (years)	45.4 ± 13.2	45.7 ± 13.01	44.9 ± 13.5	0.14
Sex (male)	58.7%	54.5%	65.6%	<0.0001
Ethnicity				
Asian	94.6%	93.4%	97.8%	
Caucasian	1.4%	1.7%	0.7%	
Black	0.3%	0.3%	0.5%	
Hispanic	0.3%	0.4%	0%	
Other	3.2%	4.2%	1.1%	
Family history HBV	30.1%	29%	30%	<0.0001
Family history HCC	12.8%	11.9%	12.9%	<0.0001
Smoking history	19.2%	16.9%	22.7%	<0.0001
Alcohol history	26.8%	23.4%	31.9%	<0.0001

Baseline Patient Characteristics

	Overall Cohort n=3221	Not Treated n=1983	Treated n=1238	<i>p</i> -value
Median follow up time	49 (12 – 206)	44 (12 – 206)	53 (12 – 161)	0.30
Cirrhosis (yes)	8.7%	9.2%	7.9%	0.20
Positive HBeAg	25.5%	17.4%	39.9%	<0.0001
HBV DNA (log ₁₀ IU/mL)	4.49 (0.0 - 11.99)	3.59 (0 .0 - 11.99)	5.5 (0.0 – 11.3)	<0.00001
ALT (U/L)	38 (2.5 - 4000)	31 (2.5 – 4000)	55 (4 – 2809)	<0.0001

Treatment and HCC Development

- Most patients did not receive treatment (61.6%).
- Those that were treated mostly achieved viral suppression (86.9%).
- A total of 102 (3.2%) patients ultimately developed HCC.

Anti-HBV Medications

HCC Incidence, by Cirrhosis Status

6.6 cases per 1000 person years (53.97 cirrhotics, 1.57 non-cirrhotics)

HCC Incidence, in Patients with Cirrhosis by Treatment

6.6 cases per 1000 person years (53.97 cirrhotics, 1.57 non-cirrhotics)

HCC Incidence, in Patients without Cirrhosis by Treatment

6.6 cases per 1000 person years (53.97 cirrhotics, 1.57 non-cirrhotics)

Predictors of HCC

	Univariate Analysis		Multivariate Analysis		
	HR (95% CI)	<i>p</i> -value	HR (95% CI)	<i>p</i> -value	
Male	3.4 (2.1-5.7)	<0.0001	2.8 (1.5-5.2)	0.001	
≥45 years (vs <45 years)	4.8 (2.9-7.9)	<0.0001	2.8 (1.5-4.9)	0.001	
Cirrhosis (vs non-cirrhosis)	29.9 (18.9-47.3)	<0.0001	17.3 (10.1-29.8)	<0.0001	
Treated (vs untreated)	0.28 (0.16-0.49)	<0.0001	0.43 (0.23-0.79)	0.007	
HBeAg-positivity	0.77 (0.47-1.27)	0.31	1.1 (0.63-1.97)	0.70	
ALT* ≥2x ULN (vs ALT <2x ULN)	1.18 (0.79-1.78)	0.42	1.07 (0.67-1.71)	0.77	
HBV DNA ≥20,000 (vs <20,000 IU/mL)	0.82 (0.54-1.22)	0.32	0.81 (0.50-1.3)	0.39	

^{*}ALT ULN cut off values were < 30 IU/L in men < 19 IU/L in women

Conclusions

- HCC incidence was significantly lower in patients with anti-HBV treatment among both non-cirrhotic and cirrhotic patients.
- Antiviral therapy was a significant independent predictor for decreased HCC risk in our mostly Asian cohort of 3221 CHB patients regardless of age, sex, or cirrhosis status

Conclusions

 However, HCC still develops at a significantly high rate in treated patients especially in older men and patients with cirrhosis.

 HCC surveillance should be continued in patients regardless of treatment status.

Limitations

- Retrospective study design
- It has already been shown in a RCT that treatment of CHB (LAM) in cirrhotics reduces the risk for HCC
- Low incidence of HCC in the non-cirrhotic group, difficult to ascertain the benefit of anti-viral therapy in risk reduction

Liver Transplant for HCC

- The Milan criteria (1 lesion ≤ 5 cm, 2-3 lesions ≤ 3 cm) remain the "gold standard" for the selection of liver transplant (LT) candidates
- Currently only patients with HCC meeting UNOS T2 criteria (1 lesion 2-5 cm, 2-3 lesions < 3 cm) are eligible for priority listing with MELD exception for LT. Patients with T1 HCC (1 lesion < 2 cm) are not eligible for MELD exception
- Local regional therapy (LRT) is commonly used to control tumor growth especially in regions with long waiting time, serving as a bridge to LT

Multicenter Study of Down-Staging of Hepatocellular Carcinoma (HCC) to Within Milan Criteria Before Liver Transplantation

<u>Neil Mehta</u>¹; Jennifer Guy²; Catherine T. Frenette³; Monika Sarkar¹; Robert W. Osorio²; William B. Minteer³; John P. Roberts¹; Francis Y. Yao¹

1. University of California, San Francisco; 2. California Pacific Medical Center, San Francisco; 3. Scripps Clinic, San Diego

Background

- Down-staging of HCC is a process involving expanded liver transplant criteria and the effects of local-regional therapy
- <u>Definition</u> of down-staging: Reduction in the size of tumor(s)
 using local regional therapy to meet acceptable liver transplant
 criteria
- Tumor response to down-staging treatment is based on radiographic measurement of the size of <u>viable</u> tumors

Background

 Single center studies have reported excellent post-LT outcomes for selected patients following successful down-staging to Milan criteria

 In one study from UCSF, a down-staging group undergoing LT (n=68) had similar intention-to-treat survival and post-transplant survival compared to patients with initial HCC meeting T2 criteria who underwent LT over the same time period (n=332)

Multi-Center Study Rationale and Aim

- The UCSF down-staging protocol has been adopted by Region 5; but post-LT outcomes have not yet been reported from other Region 5 centers
- No multicenter down-staging studies have been reported in the literature to date
- This multicenter study from 3 Region 5 centers aimed to assess post-LT and intention to treat outcomes under a uniform downstaging protocol

Region 5 Down-Staging Protocol

Inclusion criteria

- 1 lesion > 5 cm and ≤ 8 cm
- 2 or 3 lesions, each ≤ 5 cm with total tumor diameter of all lesions ≤ 8 cm
- 4 or 5 lesions, none >3 cm with total tumor diameter of all lesions ≤ 8 cm
- No vascular invasion on imaging

Region 5 Down-Staging Protocol Additional Guidelines

- Candidates can undergo deceased-donor LT 3 months after down-staging if within Milan criteria
- Candidates can undergo LDLT 3 months after down-staging if within UCSF criteria - 1 lesion <6.5cm or 2-3 lesions <4.5cm with total tumor diameter <8cm
- Patients with acute hepatic decompensation after down-staging must meet criteria for successful down-staging before LT

Patients and Methods

- 187 consecutive adult patients with HCC treated under Region 5 down-staging protocol from 3 centers (UCSF, CPMC, Scripps) from 2002-2012
- Successful down-staging: residual tumor(s) within Milan criteria
- Competing risks (CR) analysis was used to determine cumulative probabilities and predictors of dropout from the waiting list and HCC recurrence

Baseline Characteristics (N=187)

Median Age (years)	58 (IQR 54-63)
Male Gender	153 (82%)
Race/Ethnicity Caucasian Asian Hispanic African American	81 (43%) 67 (37%) 21 (11%) 13 (7%)
Etiology of Liver Disease HCV HBV Other	106 (57%) 46 (25%) 35 (18%)
Median Child-Pugh (CP) score CP A CP B CP C	7 (IQR 5-8) 107 (57%) 60 (32%) 20 (11%)

Baseline Tumor Characteristics and Treatment (N=187)

# of Lesions	N (%)	Median Size of Largest Lesion
1	71 (38%)	6.0 cm (IQR 5.7-6.7)
2-3	96 (51%)	4.0 cm (IQR 3.5-4.7)
4-5	20 (11%)	2.3 cm (IQR 2.0-2.7)

Median AFP (ng/ml) AFP >100 AFP >500	24 (IQR 8-154) 55 (29%) 29 (16%)
# of LRTs Received 1 2 3 ≥4	48 (26%) 52 (28%) 38 (20%) 49 (26%)
Type of LRT Received TACE RFA Combination	94 (50%) 12 (6%) 81 (43%)

Results: Dropout From Waiting List

Dropout from Waiting List

 Competing risks cumulative probability of dropout from 1st down-staging procedure → 26% at 1 year and 41% at 2 years

Predictor of Dropout	Univariate HR (95% CI)	p-value	Multivariate HR (95% CI)	p-value
Child's C vs A	2.2 (1.04-4.7)	0.04	3.2 (1.4-7.3)	0.005
Child's B vs A	1.9 (1.1-3.1)	0.02	1.9 (1.1-3.3)	0.02
Pre-treatment AFP >100*	1.9 (1.1-3.2)	0.01	NS	

^{*}Pre-treatment AFP both as a continuous variable and at all additional tested cutoffs (>300, >400, >500, >1000) were all significant on univariate but not multivariate analysis

Age, race/ethnicity, etiology of liver disease, and type and number of LRT received were not significant predictors of dropout

Results: Successful Down-staging

Explant Tumor Characteristics

Pathologic Tumor Stage (N=109)	# of Patients
Complete Necrosis	38 (35%)
Within Milan Criteria	50 (46%)
Beyond Milan Criteria (T3/T4a)	19 (17%)
Macro-vascular invasion (T4b)	1 (1%)
Lymph node invasion	1 (1%)

Histologic Grade (N=71)

Well-differentiated	25 (35%)
Moderately-differentiated	45 (63%)
Poorly-differentiated	1 (1%)

Vascular invasion (N=109)

Micro-vascular	7 (6%)
Macro-vascular	1 (1%)

Intention-To-Treat Survival

Center Specific Differences in Intention-to-Treat Survival

Post-Transplant Survival

Center Specific Differences in Post-Transplant Survival

Results: HCC Recurrence

Recurrence-Free Probability

Center Specific Differences in Recurrence-Free Probability

Predictors of HCC Recurrence (Competing Risks)

Predictor of Recurrence	Univariate HR (95% CI)	p-value	Multivariate HR (95% CI)	p-value
AFP > 300	4.9 (1.5-15.5)	0.006	NS	
AFP > 400	5.4 (1.7-17.0)	0.004	NS	
AFP > 500	6.6 (2.1-21.0)	0.001	8.4 (2.0-35.6)	0.003
Microvascular invasion	3.4 (0.7-15.4)	0.11	7.3 (1.4-37.7)	0.02

Age, race/ethnicity, etiology of liver disease, type and number of LRT received, explant pathologic stage and tumor grade were not significant predictors of recurrence

Summary

 Successful down-staging to Milan criteria was achieved in nearly 2/3 of patients

 Child-Pugh class B and C were the only significant predictors of dropout due to tumor progression or death

Summary

- Successful tumor down-staging:
 - Favorable explant tumor characteristics
 - 5 year post-transplant survival of 80%
 - 5 year recurrence-free probability of 87%
- No center specific differences were found in this multicenter study
- Predictors of HCC recurrence included AFP > 500 and micro-vascular invasion

Conclusions

 In this largest series to date and first multicenter study on down-staging under a uniform protocol, we observed excellent post-transplant outcomes

 These results support broader application of this uniform down-staging protocol

Limitations

- Possible referral bias (only those with good liver function were referred for consideration of tumor down-staging)
- The benefits of tumor down-staging is unclear in patients with Child's C cirrhosis
- Regional differences (long waiting time, high proportion of HBV and low NAFLD)