

Post-DDW Post-EASL Update

End Stage Liver Disease

W. Ray Kim
Professor and Chief
Gastroenterology and Hepatology
Stanford University School of Medicine

Acute on Chronic Liver Failure (ACLF)

- Definitions (latest still in evolution)
 - Liver (bilirubin>12mg/dL)Renal (sCR>2mg/dl, RRT)
 - Coagulation (INR>2.5)
 Cerebral (HE grade ¾)
 - Circulatory (pressor)Respiratory (hypoxia)

		•
	28-d mortality rate	ACLF grades
No organ failure	39/879 (4.4%)	\rightarrow No ACLF
Single nonrenal failure, creatinine < 1.5 mg/dL, no HE	8/128 (6.3%)	
Single renal failure	16/86 (18.6%)	→ ACLF-1
Single nonrenal failure, creatinine 1.5–1.9 mg/dL and/or HE	15/54 (27.7%)	7
2 organ failures	31/97 (32.0%)	→ ACLF-2
3 organ failures	17/25 (68.0%)	→ ACLF-3
4–6 organ failures	12/18 (88.9%)	1

Arroyo. Semin Liver Dis 2016; 36(02): 109-116

Epidemiology of Acute on chronic liver failure (ACLF)

"Time Trends in the Healthcare Burden and Mortality of Acute on Chronic Liver Failure (ACLF) in the United States" Allen et al.

- ACLF- acute deterioration of liver function and one or more extrahepatic organ failures: High short-term mortality despite highly resource-intensive care
- Paucity of epidemiological data in the US
- Nationwide Inpatient Sample (NIS) database
 - Largest inpatient database
 - More than 1,000 hospitals
 - 8 million individual discharge records/year
- Time-frame: 2001-2011

ACLF definition: cirrhosis + 2 failed organs ICD-9 codes of the following diagnoses

CARDIOVASCULAR

Septic shock
Severe sepsis
Arterial line
Pulmonary artery/wedge
pressure
Central venous pressure

RENAL

Hemodialysis Acute kidney failure

RESPIRATORY

Mechanical ventilation

CIRRHOSIS

Alcoholic cirrhosis
Cirrhosis without alcohol
Portal hypertension
Hepatorenal syndrome
Esophageal varices
Hepatic encephalopathy
Spontaneous bacterial
peritonitis

CEREBRAL

Hepatic coma

Allen. DDW 2016 Abstract 265

Increasing number of hospitalizations for ACLF and cirrhosis

Estimated costs of hospitalization per year

Time-trends in All cirrhotics (including ACLF)

		2001-04	2005-08	2009-11
Age (mean)		58	58	58
Female (%)		39	38	39
Race/ethnicity (%)	White	65	65	65
	Black	12	11	12
	Hispanic	17	18	17
	API	2	2	2
Etiology (%)	Viral	18	16	15
	Alcohol	37	36	34
	Other	45	48	50
Length of stay (days)		7	7	7

Allen. DDW 2016 Abstract 265

Time-trends in ACLF

		2001-04	2005-08	2009-11
Rates of ACLF organ failures (%)	Respiratory	91	86	82
Tallares (70)	Renal	51	41	41
	Cardiovascular	49	74	74
	Cerebral	21	21	29
Length of stay (days)		17	16	16

Increasing rates of documented sepsis

Mortality trends

Discharge Status

Discharges to skilled nursing facilities

Determinants of in-hospital mortality in ACLF

		Adjusted OR*	р
Age (per decade >20)		1.27	<0.01
Male		1.12	< 0.01
Race/ethnicity	Black	1.13	< 0.01
(reference white)	Hispanic	0.86	< 0.01
	Asian	1.16	< 0.01
Organ failure			
Cirrhosis or 1 organ failure		reference	
2 organ-failure	Respiratory + cardiovascular	30.73	< 0.01
	Respiratory + renal	21.87	< 0.01
	Respiratory + cerebral	9.61	< 0.01
	Cardiovascular + renal	10.0	< 0.01
	Cardiovascular + cerebral	8.88	< 0.01
	Renal + cerebral	2.02	<0.01
3 organ-failure		43.1	< 0.01

^{*}Adjusted for insurance status and income quartiles

Spontaneous Bacterial Peritonitis

- Patients with ascitic fluid PMN counts ≥ 250 cells/mm³ in a community-acquired setting in the absence of recent B-lactam antibiotic exposure should receive empiric antibiotic therapy, e.g., an intravenous third-generation cephalosporin, preferably cefotaxime 2 g every 8 hours. (Class I, Level A)
- Patients with ascitic fluid PMN counts ≥ 250 cells/mm³ in a nosocomial setting and/or in the presence of recent B-lactam antibiotic exposure should receive empiric antibiotic therapy based on local susceptibility testing of bacteria in patients with cirrhosis. (Class IIa, Level B)
- Oral ofloxacin (400 mg twice per day) can be considered a substitute for intravenous cefotaxime in inpatients without prior exposure to quinolones, vomiting, shock, grade II (or higher) hepatic encephalopathy, or serum creatinine greater than 3 mg/dL. (Class IIa, Level B)

Spontaneous Bacterial Peritonitis

- Patients with ascitic fluid PMN counts > 250 cells/mm³ and clinical suspicion of spontaneous bacterial peritonitis, who also have a serum creatinine >1 mg/dL, blood urea nitrogen >30 mg/dL, or total bilirubin >4 mg/dL should receive 1.5 g albumin per kg body weight within 6 hours of detection and 1.0 g/kg on day 3. (Class IIa, Level B)
- Patients who have survived an episode of spontaneous bacterial peritonitis should receive long-term prophylaxis with daily norfloxacin (or trimethoprim/ sulfamethoxazole). (Class I, Level A)
- In patients with cirrhosis and ascites, longterm use of norfloxacin (or trimethoprim/ sulfamethasoxazole) can be justified if the ascitic fluid protein <1.5 g/dL along with impaired renal function (creatinine ≥1.2, BUN ≥25 or serum Na ≤130) or liver failure (Child score ≥9 and bilirubin ≥3. (Class I, Level A)

Large Volume Paracentesis in SBP

The safety of diagnostic larger volume paracentesis in patients with spontaneous bacterial peritonitis

- Question:
 - SBP: Hemodynamic and renal dysfunction secondary to relative hypovolemia
 - In patients requiring LVP, presence of SBP is not known at the time of the tap.
- Retrospective study of patients with SBP (n=104): 2007-14
 - Mean MELD=16
 - Group A (LVP): >4 L removed (n=27)
 - Group B: <4 L (n=77)</p>
- SBP management
 - Albumin days 1 and 3
 - Abx

Safety of Large Volume Paracentesis in SBP Patients

- End points:
 - HR increase by > 20 BPM or SBP drop by > 20 mmHg
 - Renal injury (sCr increase by > 0.3 mg/dL)

	Group A	Group B
Increase in Heart Rate	11.11%	12.99%
Decrease in Systolic Blood Pressure	48.15%	41.56%
Acute Kidney Injury	25.93%	33.77%

Significant decrease in Systolic Blood Pressure

Time from paracentesis	Group A	Group B
0-24 hours	48.15%	41.56%
24-48 hours	48.15%	29.87%
48-72 hours	33.33%	24.68%

1 year survival: 41% (Group A) versus 35% (Group B)

Authors' conclusion

- LVP coincident to SBP diagnosis is as safe as smaller volume tap.
- Early administration of albumin and abx

Norfloxacin versus Bactrim for SBP Prophylaxis

Norfloxacin versus Trimethprim-Sulfamethoxazole in Prevention of Spontaneous Bacterial Peritonitis: A meta-analysis

Development of SBP:

	Norflox	acin	Bactri	im		Odds Ratio			Odds Ratio)	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H	H, Fixed, 95	% CI	4
Alvarez 2005	3	32	4	25	30.1%	0.54 [0.11, 2.69]		E			
Lontos 2008	8	37	9	32	55.9%	0.70 [0.24, 2.11]		9. 7			
Lontos 2014	2	40	2	40	14.0%	1.00 [0.13, 7.47]		-			
Total (95% CI)		109		97	100.0%	0.70 [0.31, 1.59]			•		
Total events	13		15								
Hieterogeneity: Chi² = I	0.22, df = 2	(P = 0	90); l² = (0%			0.01	— ∩1	1	—— 10	———(100
Test for overall effect:	Z= 0.86 (F	9 = 0.39)				U.U I	Norfla	xacin Bact	40.70	IUU

Hamdeh. DDW 2016. Abst Su1488

Extraperitoneal infections:

	Norflox	acin	Bactri	im		Odds Ratio			Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H	H, Fixed, 95%	6 CI	
Alvarez 2005	10	32	6	25	33.5%	1.44 [0.44, 4.70]				2500	
Lontos 2008	3	37	5	32	35.7%	0.48 [0.10, 2.17]		43	-		
Lontos 2014	6	40	5	40	30.8%	1.24 [0.34, 4.43]			-	-	
Total (95% CI)		109		97	100.0%	1.03 [0.49, 2.17]			•		
Total events	19		16								
Hieterogeneity: Chi² =	1.38, df = 2	2(P=0	50); l² = (0%			0.01	0.1	-	10	100
Test for overall effect:	Z= 0.09 (F	P = 0.93)				0.01	Norfla	xacin Bactri	3.7	100

Mortality:

	Norflox	acin	Bactri	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
Alvarez 2005	7	32	5	25	22.8%	1.12 [0.31, 4.07]	-
Lontos 2008	13	37	14	32	50.7%	0.70 [0.26, 1.84]	-
Lontos 2014	11	40	7	40	26.4%	1.79 [0.61, 5.22]	-
Total (95% CI)		109		97	100.0%	1.08 [0.58, 2.01]	•
Total events	31		26				
Heterogeneity: Chi²=	1.64, df = 2	(P = 0	44); l²= (96			1001
Test for overall effect:	Z= 0.25 (F	P = 0.80)				0.01 0.1 1 10 100 Norloxacin Bactrim

Hamdeh. DDW 2016. Abst Su1488

Daily Norfloxacin versus Weekly Ciprofloxacin

Comparison of Daily Norfloxacin versus Weekly Ciprofloxacin for the Prevention of Spontaneous Bacterial Peritonitis in Cirrhotic Patients: A Randomized Controlled Trial

- Randomized trial for 12 months (n=124)
 - Ciprofloxacin 750mg weekly
 - Norfloxacin 400mg daily
- Inclusion criteria: patients with cirrhosis and ascites between 20 and 75 years old were screened, and enrolled in this RCT if: 1) ascitic polymorphonucleated cell count <250/ mm³, 2) ascitic protein is equal or less than 1.5 g/dL, or 3) the presence of history of SBP
- Exclusion criteria include: a) hypersensitivity or intolerability with quinolones, b) hepatocellular carcinoma beyond Milan Criteria,c) hepatic encephalopathy > grade 2 and d) history of treatment with antibiotics within 2 weeks of enrollment.

Results

 SBP developed in one patient of ciprofloxacin group, and in 2 patients of norfloxacin group (p=1.0).

Use of FFP for LVP

Correction of Coagulopathy prior to Paracentesis is Associated with Excessive Albumin Administration and No Apparent Clinical Benefit

- 243 LVP done in 107 hospitalized patients
- 112 (46%) LVPs were preceded by FFP transfusions to correct INR in 40 patients (30 males and 10 females)

	Mean	Range
Ascites Volume Removed (L)	6.8 ± 0.2	2.0 - 13.1
FFP transfused prior to LVP (u/pt)	4.0 ± 0.2	1 - 11
Albumin Content in FFP (g/dL)	3.6 ± 0.05	3.4 - 3.7

- Total excess cost of \$ 404.27 per paracentesis
- In 6 months, for the 112 LVPs corrected with FFP, we spent an excess of \$ 45,278 with no associated clinical benefit or worsening regarding renal function.

Alternative to LVP

Alfapump system versus large volume paracentesis in the treatment of refractory ascites: Results from a multicenter randomized controlled study

Alfapump versus LVP

	ALFA (n=24)	LVP (n=25)
MELD at baseline	12.6	11.7
Median # of LVP	0.2/mo	1.4/mo
6 month survival	0.84	0.83
Infection	9/9	12/9
AKI	8/5	2/2
Encephalopathy	3/3	2/2
Device SAE	Catheter blockage 3 peritoneal 3 bladder	
Albumin (6mo)*	3.28	3.10

^{*} No change in other liver biochemistry Nutrition improved with Alfapump

Diastolic Dysfunction in Liver Transplant Candidates

Mitral Inflow

Prevalence of LVDD

The rate of LVDD diagnosis varied from 25-68% according to each echocardiographic parameter

Post-Transplant Survival

Cirrhotic Cardiomyopathy and NSBB

Prevalence of Cardiomyopathy and Impact of the Use of Non-Selective Beta Blockers in End Stage Liver Disease

Retrospective study of liver transplant candidates (n=526)
 77% male, mean age 53 years old
 49% Alcohol, 27% HCV and 12% HBV

MELD Category	n	NSBB	Myocardial Dysfunction
MELD <15	246	47%	32%
MELD 16-25	215	58%	35%
MELD >25	60	50%	37%

 Severity of cardiomyopathy measured by Left ventricular stroke work index (LVSWI): Normal > 50

Giannelli. EASL PS062

Negative Impact of NSBB on Cardiac Function

Impact on Mortality

Mortality among Patients with LVSWI < 50

Impaired Left Cardiac Performance (LVWSI < 50 g m-m)

Giannelli. EASL PS062

Window Theory

Am J Gastroenterol 2012; 107:418–427