Epidemiology, Diagnosis, and Risk Stratification of NAFLD

NCSCG Post-AASLD Review December 8, 2018

Danielle Brandman, MD, MAS
Associate Professor of Clinical Medicine
UCSF, Division of Gastroenterology/Hepatology
Associate Program Director
UCSF, Transplant Hepatology Fellowship

Prevalence of Obesity, US 2016

¹ Prevalence estimates reflect BRFSS methodological changes started in 2011. These estimates should not be compared to prevalence estimates before 2011.

^{*}Sample size <50 or the relative standard error (dividing the standard error by the prevalence) \geq 30%.

Epidemiology of NAFLD

- Prevalence of NAFLD: 16-29% US population
 - 2/3 of obese adults
 - 84-96% bariatric surgery population
 - Up to <u>76%</u> of diabetics
- Prevalence of NASH: 2-7% population
 - 10-30% of NAFLD
 - 20% of obese adults

Case

 55yo Asian man is referred to hepatology for evaluation of an echogenic liver seen on abdominal ultrasound, done to evaluate RUQ pain

Case

- 55yo Asian man is referred to hepatology for evaluation of an echogenic liver seen on abdominal ultrasound, done to evaluate RUQ pain
- The pain has since resolved, but he wonders how worried he should be about fatty liver

- His weight has fluctuated within the past few years, during which time his BMI has ranged from 29-30
- PMH: prediabetes (HbA1c 5.9),
 dyslipidemia (HDL 36, TGs 180), HTN
- Meds: atorvastatin, lisinopril
- Family history: Parents with diabetes

- His weight has fluctuated within the past few years, during which time his BMI has ranged from 29-30
- PMH: prediabetes (HbA1c 5.9),
 dyslipidemia (HDL 36, TGs 180), HTN
- Meds: atorvastatin, lisinopril
- Family history: Parents with diabetes
- Labs: AST 38, ALT 71, albumin 4.1, INR 1.0, platelets 200

What further work-up is needed?

NAFLD: A clinically silent disease

- Symptoms:
 - None: 20 77%
 - Right upper quadrant pain: 25 48%
 - Fatigue: 50 75% (Obstructive sleep apnea in 40%)
- Signs:
 - Overweight/Obese: 85 95%
 - Acanthosis nigricans: 10 -15%
 - Hepatomegaly: 25 50%
- Laboratory:
 - ALT, AST modest elevation
 - "Normal enzymes"
 - Normal ALT <19 for women, <30 for men

NAFLD Diagnostic Criteria

- Diagnostic criteria
 - Hepatic steatosis on imaging or liver biopsy
 - Ethanol intake <20-30g daily
 - Absence of other causes of liver disease
 - No medications known to cause hepatic steatosis

NAFLD Diagnostic Criteria

- Diagnostic criteria
 - Hepatic steatosis on imaging or liver biopsy
 - Ethanol intake <20-30g daily
 - Absence of other causes of liver disease
 - No medications known to cause hepatic steatosis

NAFLD is a diagnosis of exclusion

Evaluation of Suspected NAFLD

- Liver tests
- Abdominal ultrasound
- Other serologic evaluation:
 - HBsAg, sAb, cAb
 - HCV Ab
 - [AMA, IgM (for PBC)]
 - ASMA, ANA, IgG
 - A1AT phenotype
 - Iron, Tsat, ferritin
 - Ceruloplasmin age < 45
 - HAV Ab (for vaccination status)

Autoantibodies and NAFLD

- Present in about 1/3 of patients with NAFLD
- ANA: 15-20%
- Smooth muscle Ab: 3-12%
- Mitochondrial Ab: ≤1%
- Rarely patients with NAFLD have concomitant autoimmune hepatitis
 - Autoantibody titers tend to be low (≤80) in NAFLD

Brunt, *Hepatology*, 2009. Adams, *AJG*, 2004. Ravi, *Dig Dis Sci*, 2015. Vuppalanchi, *Hepatol Int*, 2012.

Ferritin and NAFLD

- 20% of patients with NAFLD had ferritin
 >1.5 times upper limit of normal (>300 women, >450 men)
- Ferritin level does not appear to have a significant impact on NAFLD histology
- Phlebotomy does not improve NAFLD

Kowdley, *Hepatology*, 2012. Adams, *Hepatology*, 2015.

Does our patient need a liver biopsy?

NAFLD: Non-Alcoholic Fatty Liver Disease Spectrum of disease

NAFLD: Non-Alcoholic Fatty Liver Disease Spectrum of disease

Steatosis detection - Imaging

- Ultrasound
 - 60–94% sensitivity and 84–95% specificity
- Fibroscan Controlled Attenuation Parameter (CAP)
 - AUROC 0.90-0.95 depending on steatosis grade
 - Not well validated
- CT scan
 - Specific but not sensitive for mild/moderate steatosis
- MRI and MR spectroscopy
 - Can detect small quantity of fat
 - Time consuming, expensive

Diagnosis and staging of NAFL vs NASH

 Liver biopsy is the only method to reliably distinguish between NAFL and NASH

Diagnosis and staging of NAFL vs NASH

- Liver biopsy is the only method to reliably distinguish between NAFL and NASH
- CK18 shows promise as a biomarker that may be elevated in NASH and not NAFL
 - Marker of hepatocyte apoptosis
- Noninvasive assessment of fibrosis
 - Fibroscan
 - Clinical prediction rules (e.g., NAFLD fibrosis score)

Indications for Liver Biopsy

Indications for Liver Biopsy

- Suspicious for NASH
 - Significant liver enzyme elevation
 - Hepatomegaly
 - Diabetes
- Suspicious for advanced fibrosis or cirrhosis
 - Thrombocytopenia
 - Imaging (e.g., splenomegaly)
 - Noninvasive assessment: NAFLD fibrosis score, Fibroscan
 - Diabetes
 - Older age

Liver Biopsy in NAFLD

Tarnished gold standard

Noninvasive staging of NAFLD

	AUROC								
	Any fibrosis	≥F2	F3-4	Cirrhosis					
Transient elastography	0.74-0.78	0.79-0.84	0.83-0.88	0.86-0.93					
MR elastography	0.83	0.91	0.89	0.97					
NAFLD fibrosis score	0.82	0.72-0.82	0.73-0.86	0.77-0.92					
APRI	0.61	0.54-0.72	0.61-0.75	0.65-0.77					
FIB-4	0.8	0.72-0.83	0.78-0.86	0.78-0.88					

Boursier, J Hepatol 2016. Imajo, Gastroenterology 2016. Siddiqui, . . .Brandman et al. Clin Gastro Hep, 2018. Hsu, Clin Gastro Hep, 2018.

Transient Elastography: Fibroscan

CONTROLLED

- Propagation of the mornwood short wave through the ston and two treases is moreoted using 15 AHI showwood.
- GE MAN 100 Delets Feore Wast a Grophys
- depth of measurement from depending on probe

CONTROLLED (Automobile)

- M.9* gadace purco ettern Re operace obtains
- computes liver partners and attenues of attenues on
- is poderned automotically the algorithm selects the solid measurements

Stiffness (E)

- Stiffness is computed from the trace ware reconstitute war.
- The shear wave propagation map is a saving surrestriction of the shear wave propagation as a function of time and depth.
- The Young's Wedulus (I) is expressed in recovered (RPs)

Fibroscan

- Factors that may produce inaccurate results:
 - Obesity
 - Steatohepatitis
 - Alcohol use
 - Nonfasting state
 - Cholestasis
 - Hispanic ethnicity
- Requires adequate experience to produce reliable results

Fibroscan vs MR elastography

Fibroscan vs MR elastography

	Sensitivity		Specificity		PPV		NPV	
	TE	MRE	TE	MRE	TE	MRE	TE	MRE
Any fibrosis	66%	71%	67%	73%	81%	85%	48%	54%
F2-4	76%	85%	80%	85%	72%	80%	89%	83%
F3-4	77%	82%	78%	83%	54%	62%	94%	91%
F4	80%	80%	81%	86%	34%	41%	97%	97%

Comparison of noninvasive methods

Variable performance of noninvasive assessment of fibrosis

Serial use of NFS/FIB-4 and TE

Algorithm to triage suspected NAFLD

 The patient was reluctant to undergo liver biopsy and opted instead for Fibroscan

- The patient was reluctant to undergo liver biopsy and opted instead for Fibroscan
 - Liver stiffness measurement: 14kPa (IQR 0.9)
 - CAP score: 330 (IQR 13)

- The patient was reluctant to undergo liver biopsy and opted instead for Fibroscan
 - Liver stiffness measurement: 14kPa (IQR 0.9)
 - CAP score: 330 (IQR 13)
 - Interpretation: Cirrhosis (F4), though LSM could be overestimated due to the presence of severe steatosis (CAP>300)

- The patient was reluctant to undergo liver biopsy and opted instead for Fibroscan
 - Liver stiffness measurement: 14kPa (IQR 0.9)
 - CAP score: 330 (IQR 13)
 - Interpretation: Cirrhosis (F4), though LSM could be overestimated due to the presence of severe steatosis (CAP>300)
 - NFS -0.4 (indeterminate), FIB-4 1.24 (90% NPV for advanced fibrosis)

Interpretation of LSM measurements

Interpretation of LSM measurements

 Because of the concern for cirrhosis, you again recommend liver biopsy for more definitive diagnosis and staging

- Because of the concern for cirrhosis, you again recommend liver biopsy for more definitive diagnosis and staging
- The patient is now amenable to liver biopsy

- Impression: steatohepatitis
 - >20 portal tracts present, no fragmentation
 - Severe steatosis (>66%)
 - Ballooned hepatocytes
 - Moderate lobular inflammation
 - Fibrosis: stage 3, with bridging fibrosis and areas of centrizonal fibrosis

What do you tell the patient about his disease?

Leading causes of death in NAFLD

- 1. Coronary artery disease
- 2. Malignancy
- 3. Liver disease

Leading causes of death in NAFLD

- 1. Coronary artery disease
- 2. Malignancy
- 3. Liver disease

NAFLD is associated with increased risk of non-fatal CV events

Increased risk of incident CV in NAFLD

Leading causes of death in NAFLD

- Coronary artery disease
- 2. **Malignancy**
- Liver disease

Incidence of malignancy in NAFLD is higher than in control patients

HCC Risk in NASH

- Diabetes may be playing an important role in pathogenesis of HCC
- Annual incidence of HCC in NASH: 0.3-4.3%
- Up to 50% of HCC may develop in absence of cirrhosis
- HCC surveillance
 - Cirrhosis: yes
 - Non-cirrhotic NASH: ???

Rinella ME, JAMA 2015
Perumpail et al. Dig Dis Sci 2015
Starley et al, Hepatology 2010.
Ascha et al. Hepatology 2010.
Younossi et al. Hepatology 2016.

Risk of cirrhosis/HCC in NAFLD and normal liver enzymes

	Positive Controls N=42,901	Steatosis/Normal Liver Enzymes N=11,415	Negative Controls N=24,645	
Age	53.3 (SD 12.1)	56.3 (SD 10.3)	58.1 (SD 10.7)	
Incidence Rate per 1000 Person-Years (95% CI)				
Cirrhosis	4.93 (4.70-5.17)	2.50 (2.19-2.85)	2.40 (2.19-2.64)	
нсс	0.49 (0.42-0.57)	0.16 (0.09-0.27)	0.13 (0.08-0.20)	
Hazard Ratio (95 % CI)				
Cirrhosis	2.3 (2.0-2.5)	1.1 (0.9-1.3)	Ref	
нсс	4.6 (3.0-7.0)	1.3 (0.7-2.5)	Ref	

Leading causes of death in NAFLD

- 1. Coronary artery disease
- 2. Malignancy
- 3. Liver disease

Fibrosis stage is the strongest predictor of outcomes in NASH

Outcomes in NAFLD with F3-4 fibrosis

ABIDE: a novel predictor model of liver decompensation in NAFLD cirrhosis

Harrell's C index (95% CI) validation cohort (n=149)

Scores	Overall Follow-Up	Five Years
ABIDE	0.76 (0.66-0.89)	0.84 (0.76-0.92)
NAFLD-FS	0.65 (0.52-0.77)	0.71 (0.67-0.82)
FIB-4	0.67 (0.55-0.79)	0.72 (0.70-0.85)

AST/ALT ratio
Bilirubin
INR
Diabetes
Esophageal varices

Prognosis of NAFLD by fibrosis stage

NASH is increasing as an indication for liver transplantation

Patients with NASH + BMI ≥40 or DM have high risk of LT waitlist dropout

Post-LT survival for NASH is excellent

 The patient is interested to know what can be done to treat disease and prevent or reverse fibrosis

Weight Loss

 Goal: loss of 7-10% baseline weight to improve NASH and fibrosis

- Diet
 - Portion control and simple carbohydrate avoidance
 - Avoid fructose-sweetened beverages

Weight Loss

- Exercise
 - Exercise alone reduces liver fat
 - Aerobic >150-250 minutes per week
 - Resistance training 45 minutes/day x 3 days/week

Harrison. Hepatology, 2009. Promrat, Hepatology, 2010 Vilar-Gomez, Gastro, 2015 Chalasani, Hepatology 2012.

Weight Loss

- Bariatric Surgery
 - Foregut procedures (Sleeve gastrectomy, Roux-en-Y gastric bypass, Lap band)
 - Improvement in NAFL/NASH +/- fibrosis
 - Relatively contraindicated in patients with cirrhosis
 - If needed, laparoscopic sleeve gastrectomy by an experienced surgeon is the operation of choice

Metabolic syndrome management

- Statins
 - Safe for use in NAFLD
 - Potential benefits of NAFLD/liver enzyme improvement and reduced risk of liver death or HCC
 - Not proven in randomized controlled trials
- Metformin
 - Safe for use in NAFLD
 - Some studies show improvement in liver biopsy and liver enzymes
 - Not proven in randomized controlled trials
 - Possible anti-neoplastic effects

Medications to treat NAFLD

- Only patients with biopsy-proven NASH need liver-specific treatment
- Medications currently available recommended for treatment of NASH
 - Vitamin E
 - Pioglitazone (Actos)

NAFLD pathways/targets for treatment

Summary

- NAFLD is a major public health problem worldwide
- NASH>>>NAFL has risk of progression to cirrhosis
 - Biopsy is needed to characterize NAFLD
 - Noninvasive assessment may help to identify higher risk patients
- Leading cause of death in NAFLD: Heart disease
- NAFLD is an important contributor to liver cancer and need for liver transplant

Summary

- Management hinges on weight loss, exercise, avoiding carbohydrates, metabolic syndrome control
 - Vitamin E (?pioglitazone) possibly for biopsyproven NASH
 - Many drugs in the pipeline for NASH and fibrosis

Thank you!

Danielle.Brandman@ucsf.edu